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1. Introduction

Let (G, ·) be an abelian group, and let |G| = N be the order of G.
The Discrete Logarithm Problem (DLP) is: given g, h ∈ G find x ∈ N,
if it exists, such that h = gx. The security of a discrete logarithm (DL)
system depend on the assumption that discrete logarithms in G are hard
to compute. In practice a DL system is based on a cyclic subgroup of G of
a prime order q. Let q be the largest prime divisor of N . It is well known
that the DLP in G is as hard as the DLP in the subgroup of order q [20]. For
this reason it is essential to choose G such that q | N and q is a large prime.
From the security point of view it is reasonable to assume that q ≈ 2160.
For the complexity of algorithms depending on N we define the function

LN (α, c) = exp((c+ o(1))(logN)α(log logN)1−α).

with a, c ∈ R, 0 ≤ a ≤ 1 and c > 0 [6]. If the second parameter is omitted,
it is understood that is equal 1/2. Let G = F∗pn be a multiplicative group
of finite fields. The DLP in F∗pn can be computed in subexponential time
Lpn(1/3) [1], [10], [15], [16]. For finite fields of small characteristic, this
problem can be solved with heuristic complexity Lpn(1/4) [14]. The above
shows that one should take pn at least 1024 bits in order to have the DLP
intractable to solve. So to efficiently implement a DL system in G one need
to find primes p, q of appropriate size such that

q | pn − 1.
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Fix n = 1. In many a DL systems a generator g of G is required. No
polynomial-time algorithm is known for finding generators, or even for
testing whether an element is a generator of G if the factorization of is
unknown. There is a special kind of prime for which it is easy. Namely, let
p = 2q + 1, where q is also a prime. In order to find a generator of G one
select randomly g ∈ G such that g2 ̸≡ 1 (mod p) and gq ̸≡ 1 (mod p).
For p ≈ 21024 the algorithm works well in practice. On the other hand,
theoretical estimation of the algorithms running time becomes a problem.
We do not know if there exist infinitely many primes p of the above form.
This is an extremely hard, still unproven mathematical problem. However,
there are some conjectures related to this problem [13]. To overcome this
problem, we consider the second approach for generating a generator g of
G. Let x ∈ R be a sufficiently large number. Fix a prime q ∈ [x, 2x]. The
algorithm randomly selects a positive integer k ∈ [0, cq(log q)20], where
c > 0 is a constant. Next it computes p = qk+ 1 and checks if p is a prime.
If it is a prime then the algorithm returns the prime p and k. Otherwise, it
randomly finds k and the above mentioned steps are repeated. Let λ ≥ 1.
The above algorithm finds a prime p ≤ cq2(log q)20 with probability greater
than or equal to 1−e−λ after repeating [c0λ(log x)] steps with the possible
exception of at most O(x(log x)−2) values of q, where c0 > 0 is a constant
[12]. Since p−1 = kq, the factorization of p−1 can be obtained by factoring
k. However, we cannot exclude the possibility that the number of steps we
need to factor k is exponential. On the other hand, given p, q, one can
easily find an element g ∈ G of order q and implement a DL system in the
subgroup generated by g. We define the parameter

ρ(G) =
logN
log q

,

which measures the group G size N relative to the size of the prime order
q subgroup of G. For sufficiently large x the above algorithm finds primes
p and q with ρ(F∗p) = 2 + o(1). An interesting problem in this area is the
following: Construct a polynomial-time algorithm that finds primes p, q
such that q | pn − 1 with

ρ(F∗pn) = n+ o(1).

Let n be a positive integer, and let Φn(x) be the nth cyclotomic polynomial.
Let p be a prime and let F∗pn be a multiplicative group of finite field Fpn .
It is well known that

|F∗pn | = pn − 1 =
∏
d|n

Φd(p).
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Let G be a subgroup of F∗pn of a prime order q > n, and let q divides Φn(p).
Then Fpn is the smallest extension of Fp that contains G [18]. In recent
years, there have been several proposal DL systems based on the G with
q < Φn(p) [19], [25]. Rubin and Silverberg [22] generalise the above cryp-
tosystems using the algebraic torus Tn(Fp) which is isomorphic to the G
with q = Φn(p). Techniques used in the above mentioned DL systems allow
to represent an element of G with less coefficients than a general element
of Fpn needs. Such an approach leads to substantial savings both in the
computational complexity of algorithms performing arithmetic operations
in Fpn and transmission elements of Fpn , without compromising security.
We introduce the following definition [12].

Definition 1. A prime q is relatively n-cyclotomic to a prime p if q divides
Φn(p).

Algorithms for generating primes p and q such that q is relatively
n-cyclotomic to a prime p are utilized for computing key parameters in DL
systems based on G. From the security point of view it is essential to find
a prime p such that Φn(p) has a large prime factor q having at least 160 bits
to make DLP in G intractable. On the other hand, one should find a prime
p such that n log p ≈ 1024 in order to have the DLP unfeasible to solve by
applying an index calculus method. In [12] a polynomial time algorithm
generating of two primes p and q such that q is relatively n-cyclotomic to
p is proposed. The algorithm is probabilistic and finds such primes with

ρ(F∗pn) = n+ o(1).

For cryptographic purposes one can replace F∗pn by the group of rational
points of E(Fpn) on an elliptic curve. Let G = E(Fp). The most efficient
way to solve DLP in G is the Pollard’s rho method [21]. It takes O(

√
N)

group operations. On the other hand Hasse’s theorem shows that N =
p + 1 − t, where |t| ≤ 2

√
p. So in practice it is recommended to generate

a prime p ≈ 2200. Now, we introduce the following definition [11].

Definition 2. Let p, q be a pair of primes and ∆ < 0. The primes p, q are
defined to be CM-primes with respect to ∆ if there exist integers f and t
such that

|t| ≤ 2
√
p, q | p+ 1− t, 4p− t2 = ∆f2.

To construct a DL system based on G it is essential to find CM-primes
p and q with respect to ∆ of appropriate order of magnitude. Given such
primes, an elliptic curve E over Fp can be constructed by applying the
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complex multiplication (CM) method [4], [7]. Given current computational
power, the method can construct curves over Fp when |∆| ≤ 1012. For
this reason ∆ should be sufficiently small to make the CM method work
effectively in practice. In [11] a polynomial time construction of CM primes
with respect to ∆ is proposed. The algorithm is probabilistic and finds such
primes with

ρ(E(Fp)) =
5
2

+ o(1).

Let C be a hyperelliptic curve of genius g defined over finite prime field Fp.
We denote the group of Fp-rational points of the Jacobian of C by JC(Fp).
Koblitz [11] proposed the DLP in groups of the form G = JC(Fp). For
general hyperelliptic curves of genus g ≤ 2 the DLP in JC(Fp) is thought
to be hard [2], [8], [9], [26]. To make the DLP in JC(Fp) intractable, it is
essential to generate a large prime p, and a curve C defined over Fp, such
that |JC(Fp)| has a large prime factor q. To construct a genus 2 curve over
Fp with the above properties one can use the genus 2 CM method [27].
This method generates curves for which a prime p and |JC(Fp)| are known
in advance. In practice, to the above mentioned method works efficiently,
K must have a small discriminant. A field K is called a CM field if it is
a totally imaginary quadratic extension of a totally real algebraic number
field. Let K, [K : Q] = 2t be a CM field with the corresponding ring of
integers OK . We say that π is a Weil q-number if π ∈ OK , and for every
complex embedding σ : K → C we have |σ(π)| = √q. There is a connection
between |JC(Fp)| and a Weil p-number. Namely, if K = Q(π) then

NK/Q(π) = pt, |JC(Fp)| = NK/Q(π − 1).

Now, we introduce the following definition

Definition 3. Let K be a CM field, and let p, q be a pair of primes. The
primes p, q are defined to be CM-primes with respect to K if there exist
π ∈ OK such that π is a Weil p-number, and

p = ππ, q | NK/Q(π − 1).

Let K be a quartic CM field. To implement a DL system based on G
of appropriate order of magnitude CM primes p, q with respect to K are
required. In [27] a probabilistic method for generating CM primes with re-
spect to K is presented. However, an analysis of computational complexity
of the algorithm were not given there. An interesting open problem is the
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following: Construct a polynomial-time algorithm generating CM primes
p, q with respect to K.

In the present paper, we give a survey of certain algorithms generating
primes to DL systems. We focus attention on the algorithms that works in
polynomial time. The remaining part of the paper is organized as follows.
In Section 2 we describe an algorithm for generating of finding two primes
p, q such that q is relatively n-cyclotomic to a prime p. An algorithm for
CM-primes with respect to ∆ is given in Section 3.

2. Relatively n-cyclotomic primes

Fix n ∈ N. In the present section, we show a general method of fin-
ding two primes p, q such that q is relatively n-cyclotomic to a prime p
[12]. Before we describe the algorithm, we introduce some notation. Given
a primitive nth root of unity ω, K = Q(ω) denotes the nth cyclotomic field
with the ring of integers

OK = {a1 + a2ω + . . .+ aφ(n)ω
φ(n)−1, ai ∈ Z, i = 1, . . . , φ(n)}.

Let α ∈ OK , we write

αωi−1 =
φ(n)∑
j=1

aijω
j−1, aij ∈ Z, a1j = aj . (2.1)

The determinant det[aij ] of the matrix A(α) = [aij ] of (2.1) is the norm
of the element α ∈ OK relative to the K/Q [5, Definition, p. 400]. So, if
α ∈ OK is given then N(α) = det(A(α)). The main algorithm consists of
the following three procedures. We start with a procedure which generates
α ∈ OK such that N(α) ≡ 1 (mod n) is a prime.

Procedure 1 (n). Fix n ∈ Z, n > 1 and let ω be a primitive nth root of
unity. Fix K = Q(ω), [K : Q] = 2t, where t is the number of complex
embeddings of K into C. Let ε1, . . . , εr, be a system of fundamental units
of K, where r = t−1, and let σ1, σ1 . . . , σt, σt be embeddings of K = Q(ω)
into C. We define

M = M(n) = max1≤i≤r{log |σj(εi)|, j = 1, . . . , t}.

Let ω1 = ω, ω2, . . . ωφ(n) be the conjugates of ω and we define

C = C(n) = max{|υi,j |, i = 1, . . . , φ(n), j = 1, . . . , φ(n)}. (2.2)
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M. Grześkowiak

where
1 ω1 · · · ω

φ(n)−1
1

1 ω2 · · · ω
φ(n)−1
2

...
...

. . . · · ·
1 ωφ(n) · · · ω

φ(n)−1
φ(n)


−1

=


υ1,1 υ1,2 · · · υ1,φ(n)
υ2,1 υ2,2 · · · υ2,φ(n)

...
...

. . . · · ·
υφ(n),1 υφ(n),2 · · · υφ(n),φ(n)


The procedure finds α =

∑φ(n)
i=1 aiω

i−1 ∈ OK such that N(α) ≡ 1
(mod n) is a prime, x ≤ N(α) ≤ 2x and |ai| < Cφ(n)erM (2x)1/φ(n).
step 1.: For i = 1, . . . , φ(n), choose ai ∈ Z such that |ai| <

Cφ(n)erM (2x)1/φ(n) at random in Z. Write α = a1+ a2ω+ . . .+
aφ(n)ω

φ(n)−1 ∈ OK .
step 3.: Compute q = N(α). If q < x or q > 2x, then go to step 1.
step 4.: If q is a prime, then terminate the procedure. Otherwise go to

step 1.
step 5.: Return a1, . . . , aφ(n), q and A(α) such that det(A(α)) = q.

Let m be a positive integer. We denote by PT the number of bit
operations necessary to carry out the deterministic primality test [3]. For
simplicity, assume that PT takes at least O(log3m) bit operations.

Theorem 2. Given n ∈ Z, n > 2, there exist two constants c0 > 0 and x0
such that for every x ≥ x0 and an arbitrary real λ ≥ 1, Procedure 1 finds

α =
φ(n)∑
i=1

aiω
i−1 ∈ OK , |ai| < Cφ(n)erM (2x)1/φ(n)

such that
N(α) ≡ 1 (mod n), x ≤ N(α) ≤ 2x,

is a prime, with probability greater than or equal to 1−e−λ after repeating
[c0λ(log x)] steps of the procedure. Every step of the procedure takes at
most PT bit operations.

Proof. See [12]. �
Now, we introduce the deterministic procedure of finding roots of irre-

ducible polynomials Φn(x) (mod q) that works effectively in polynomial
time and may be an alternative to the random algorithms.

Procedure 3 (α,A(α), q). Fix n ∈ Z, n ≥ 1. Given α ∈ OK and a prime q
such that N(α) = q ≡ 1 (mod n), where N(α) = det(A(α)), this proce-
dure computes a root of Φn(x) (mod q).
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step 1.: Determine the matrix M = [A(α)T |C]φ(n)×φ(n)+1 which is a ma-
trix obtained by appending the columns of A(α)T and the vector
C, where CT = [y,−1, 0, . . . , 0]1×φ(n).

step 2.: Applying Gaussian Elimination algorithm over Fq transform the
matrix M into the upper triangular form

M ′ =


a′1,1 a′2,1 · · · a′φ(n),1 c′1

0 a′2,2 · · · a′φ(n),2 c′2
...

...
. . .

...
...

0 0 · · · a′φ(n),φ(n) c′φ(n)

 ,

where c′i = c′i(y) are polynomials of degree no greater than 1.
step 3.: For each i = φ(n), . . . , 1

(1) Write

bi =
1
a′ii

c′i(y)−
φ(n)∑
j=i+1

a′ijbj

 =
riy + si

ti
, where q|ti

(2) If (ri, q) = 1 then compute y ≡ −sir−1i (mod q) and go to
Step 4. Otherwise go to Step 3

step 4.: Return y (mod q).

Theorem 4. Fix n > 2, and let Φn(x) be the nth cyclotomic polynomial.
Given α ∈ OK , a matrix A(α) and a prime q such that q = N(α) ≡ 1
(mod n), where N(α) = det(A(α)), Procedure 3 is deterministic and finds
a root of Φn(x) (mod q) using O(φ(n)3 log3 q) bit operations.

Proof. See [12]. �

Procedure 5 (r, q). Given a prime q and r < q, the procedure finds a prime
p ≡ r (mod q).
step 1.: Choose randomly k ∈ N such that

k ∈ [10, ((240q2(log 220q)20)− r)q−1].

step 2.: Compute p = qk + r. If p is not a prime, then go to step 1.
step 3.: Return p.
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Theorem 6. Let a prime q ∈ [x, 2x] be the output of Procedure 3, and
let r < q. For sufficiently large q ≥ 232 and an arbitrary real λ ≥ 1,
Procedure 5 finds k ∈ N and a prime p = qk + r such that

k ∈ [0, ((240q2(log 220q)20)− r)q−1], q ≤ p ≤ 240q2(log 220q)20

with probability greater than or equal to 1 − e−λ after repeating
[λ8 log(220q)] steps of the procedure with the possible exception of at most
O(x(log x)−2) values of q. Every step of the procedure takes at most PT
bit operations.

Proof. See [12]. �
We are now in a position to introduce the main algorithm.

Algorithm 7. (n)
step 1.: α,A(α), q := Procedure 1 (n)
step 2.: y := Procedure 3 (α,A(α), q)
step 3.: p := Procedure 5 (y, q)
step 4.: Return p, q;

Theorem 8. Algorithm 7 finds two primes p and q such that q is relatively
n-cyclotomic to a prime p.

Proof. See [12]. �
An interesting open problem is the

following: Construct a polynomial-time algorithm that finds CM-primes
p, q such that

ρ(E(F∗pn)) =
n

φ(n)
+ o(1).

3. CM primes with respect to ∆

Throughout this section, ∆ < 0 is a square-free rational integer, K =
Q(
√

∆) is the quadratic field with the corresponding ring of integers

OK = {a+ bω : a, b ∈ Z},

and Of = [1, fω], f ∈ Z is any order of K, where

ω =
1 +
√

∆
2

if ∆ ≡ 1 (mod 4),

ω =
√

∆ if ∆ ≡ 2, 3 (mod 4).

170



Prime Numbers and Cryptosystems Based on Discrete Logarithms

By N(α) = αα = (a + bω)(a + bω) we denote the norm of an element
α = a+ bω ∈ OK with respect to Q. That is

N(α) = a2 + ab+
1−∆

4
b2 if ∆ ≡ 1 (mod 4),

N(α) = a2 −∆b2 if ∆ ≡ 2, 3 (mod 4).

In this section we describe a probabilistic algorithm which generates
CM-primes q and p with respect to ∆ that executes in polynomial time
[11]. The algorithm consists of the following two procedures.

Procedure 9 (n,∆, x, γ) Given n,m ∈ N, (m,n) = 1, a square-free ∆ ∈
Z, ∆ < 0, and a sufficiently large x ∈ R. Fix K = Q(

√
∆) with the

corresponding ring of integers OK . Let γ = f + gω ∈ OK be such that
|f |, |g| ≤ n, N(γ) ≡ m (mod n); this procedure finds α = a + bω ∈ OK ,
N(α) ≡ m (mod n), such that N(α) = q is a prime with x ≤ q ≤ 2x.
step 1.: Choose u, v at random in Z such that

|u| ≤ (

√
1−∆√
−∆

(2x)1/2 − f)n−1, |v| ≤ (
2√
−∆

(2x)1/2 − g)n−1

if ∆ ≡ 1 (mod 4),

|u| ≤ ((2x)1/2 − f)n−1, |v| ≤ (
1√
−∆

(2x)1/2 − g)n−1

if ∆ ≡ 2, 3 (mod 4).

step 2.: Compute a = nu+ f and b = nv + g
step 3.: Compute

q = a2 + ab+
1−∆

4
b2 if ∆ ≡ 1 (mod 4),

q = a2 −∆b2 if ∆ ≡ 2, 3 (mod 4).

If q < x or q > 2x, then go to step 1.
step 4.: If q is a prime, then terminate the procedure. Otherwise, go to

step 1.
step 5.: Return α = a+ bω, q.

Let f be an ideal of OK . Let H∗f (K) be the group of narrow ray clas-
ses (mod f), and let h∗f (K) be the number of elements in H∗f (K). In the
notation above we have the following theorem.
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Theorem 10. Given n,m ∈ N, (m,n) = 1, and a square-free integer
∆ < 0. Fix K = Q(

√
∆) with the corresponding ring of integers OK ,

and let f = nOK . There exists x0 > 0 such that for every x ≥ x0 and
an arbitrary real λ ≥ 1, Procedure 9 finds α = a + bω ∈ OK such that
N(α) ≡ m (mod n) is a prime, x ≤ N(α) ≤ 2x, where

|a| ≤
√

1−∆√
−∆

(2x)
1
2 , |b| ≤ 2√

−∆
(2x)

1
2 if ∆ ≡ 1 (mod 4),

|a| ≤ (2x)
1
2 , |b| ≤ 1√

−∆
(2x)

1
2 if ∆ ≡ 2, 3 (mod 4).

with probability greater than or equal to 1−e−λ after repeating [c1λ(log x)]
steps of the procedure, where

c1 =
16
√

1−∆h∗f (K)

−∆n2
if ∆ ≡ 1 (mod 4),

c1 =
16h∗f (K)
√
−∆n2

if ∆ ≡ 2, 3 (mod 4).

Every step of the procedure takes no more than PT bit operations.

Proof. See [11]. �

Procedure 11 (α, q,∆, x). Fix 0 < ε < 2/5, and fix K = Q(
√

∆) with
the corresponding ring of integers OK . Given α = a + bω ∈ OK such
that q = N(α) ≡ m (mod n), (m,n) = 1, is a prime, x ≤ q ≤ 2x;
this procedure finds β ∈ OK such that β ≡ 1 (mod αOK) and N(β) is
a prime.
step 1.: Choose s, t at random in Z.

If ∆ ≡ 1 (mod 4),

|s| ≤
√

1−∆√
−∆

(2x)(3+5ε)/(4−10ε), |t| ≤ 2√
−∆

(2x)(3+5ε)/(4−10ε).

If ∆ ≡ 2, 3 (mod 4)

|s| ≤ (2x)(3+5ε)/(4−10ε), |t| ≤ 1√
−∆

(2x)(3+5ε)/(4−10ε)

step 2.: Compute

c =as− 1−∆
4

bt+ 1, d = bs+ (a+ b)t if ∆ ≡ 1 (mod 4),

c =as+ ∆bt+ 1, d = bs+ at if ∆ ≡ 2, 3 (mod 4).
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step 3.: Compute

p = c2 + cd+
1−∆

4
d2 if ∆ ≡ 1 (mod 4),

p = c2 −∆d2 if ∆ ≡ 2, 3 (mod 4).

If p < x or p > (2x)5/(2−5ε), then go to step 1.
step 4.: If p is a prime, then terminate the procedure. Otherwise, go to

step 1.
step 5.: Return β = c+ dω, p.

Theorem 12. Let ∆ < 0 be a square-free integer. Fix K = Q(
√

∆) with
the corresponding ring of integers OK , and fix 0 < ε < 2

5 . Let α ∈ OK and
x ≤ q ≤ 2x be the output of Procedure 9. Procedure 11 with the input
consisting of α, q and ∆, has the following properties: there exists x0 > 0
such that for every x ≥ x0, and for an arbitrary real λ ≥ 1, and for any
constant A > 2, the procedure finds β ∈ OK such that,

β = c+ dω, p = N(β) is a prime, x ≤ N(β) ≤ (2x)5/(2−5ε),

with probability greater than or equal to 1 − e−λ after repeating
[c2λ(log 2x)] steps of the procedure, where

c2 =
80h(K)

√
1−∆

−(2− 5ε)w(K)∆
if ∆ ≡ 1 (mod 4),

c2 =
40h(K)

(2− 5ε)w(K)
√
−∆

if ∆ ≡ 2, 3 (mod 4).

for almost all α with the possible exception of at most O(x(log x)−A) values
of α. Every step of the procedure takes no more than PT bit operations.

Proof. See [11]. �
We are now in a position to introduce our main algorithm.

Algorithm 13. (n,∆, x, γ)
step 1.: α, q := Procedure 9 (n,∆, x, γ).
step 2.: β, p := Procedure 11 (α, q,∆, x).
step 3.: Return p, q, α, β.
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Theorem 14. Given n,m ∈ N, (m,n) = 1, and a square-free integer
∆ < 0. Fix K = Q(

√
∆) with the corresponding ring of integers OK . If

Algorithm 13 terminates, then the output is a pair α, β ∈ OK , β = c+ dω
such that q = N(α) ≡ m (mod n), N(β) = p are CM-primes.

Proof. See [11]. �

Remark 15. Let n ∈ N, and let ∆ < 0 be a square-free integer. Fix
K = Q(

√
∆) with the corresponding ring of integers OK . Given CM-primes

q = N(α), p = N(β), where α = a + bω, β = c + dω ∈ OK . There
exists an elliptic curve E over Fp with complex multiplication by an order
Od = [1, dω] ⊆ K such that q divides

|E(Fp)| = p+ 1− 2c− d if ∆ ≡ 1 (mod 4),

|E(Fp)| = p+ 1− 2c if ∆ ≡ 2, 3 (mod 4).

Let c > 0 be a constant, and let ∆ = O((log p)c). For any ϵ > 0 constructing
E over Fp via the CM method takesO((log p)c(1+ϵ)/2) arithmetic operations
in Fp.

An interesting open problem is the following: Construct a poly-
nomial-time algorithm that finds CM-primes p, q such that

ρ(E(Fp)) ≤ 2.
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LICZBY PIERWSZE I KRYPTOSYSTEMY OPARTE NA
LOGARYTMACH DYSKRETNYCH

Streszczenie. W pracy przedstawiamy algorytmy, które generują liczby pierwsze do
kryptosystemów opartych na logarytmach dyskretnych. Zaprezentowane algorytmy są
probabilistyczne i działają w wielomianowym czasie.

Słowa kluczowe: Kryptosystemy oparte na torusie, kryptosystemy eliptyczne i hiper-
eliptyczne.


